October 23, 2024 Stationary Points

Stationary Points

Extrema

Extrema are simply points where the direction of a curve changes. For some function f(x), the point (c, f(c)) may be a global or local minimum or maximum, or neither. This point:

- is a **global maximum** if f(c) > f(x) for all values of x in the domain
- is a **local maximum** if f(c) > f(x) for all values of x near c
- is a global minimum if f(c) < f(x) for all values of x in the domain
- is a **local minimum** if f(c) < f(x) for all values of x near c

To find extrema we use **stationary points** - places where the gradient is perfectly 0. If the point c, f(c) is a local extremum (maximum or minimum) it must also be a stationary point. However, it's important to note that just because all local extrema are stationary points, not all stationary points are extrema.

Finding Stationary Points With The First Derivative Test

Given the equation $f(x) = 2x^3 - 3x^2$, we can find the stationary points and determine their nature thus:

$$f'(x) = 2x^3 - 3x^2 \tag{1}$$

$$6x^2 - 6x = 0 : x^2 = x (2)$$

$$x = 0, x = 1$$

$$f'(x) < 0: (3)$$

$$f'(-1) = 6 \cdot -1^2 - 6 \cdot -1 = 6 + 6 = 12$$
 (3.1)

$$\therefore f(x)$$
 is increasing when $x < 0$ (3.2)

$$0 < f'(x) < 1: \tag{3}$$

$$f'(0.5) = 6 \cdot 0.25 - 6 \cdot 0.5 = -1.5$$
 (3.1)

$$\therefore f(x)$$
 is decreasing when $0 < x < 1$ (3.2)

(a) Determine if the derivative is

greater than or less than zero.

1. Differentiate the function.

f'(x) = 0.

2. Find the stationary points by find-

3. Divide up the domain with the boundaries at these stationary

points. For each section:

ing the values of x for which

$$f'(x) > 1: (3)$$

$$f'(2) = 6 \cdot 2^2 - 6 \cdot 2 = 24 - 12 = 12$$
 (3.1)

$$\therefore f(x)$$
 is increasing when $x < 0$ (3.2)

If f'(x) is greater than zero, then f(x) will always be increasing. If f'(x) is less than zero, then f(x) will always be decreasing. However, it is possible that f'(x) will be equal to zero, in which case this test is inconclusive.

More formally, for some function f(x) and some stationary point (c, f(c)):

If f'(x) > 0 when x < c and f'(x) < 0 when x > c then x = c is a local maximum. If f'(x) < 0 when x < c and f'(x) > 0 when x > c then x = c is a local minimum. If neither of these is true, the test is inconclusive.

The Second Derivative Test

The second derivative test states:

If f''(x) > 0, then x is a local minimum. If f''(x) < 0, then x is a local maximum. Otherwise, the test is inconclusive. October 23, 2024 Stationary Points

Examples

Find and classify the stationary point of $f(x) = x^2 - 6x + 3$.

$$f'(x) = 2x - 6$$
 \therefore s.p. at $2x = 6$ \therefore $x = 3$
 $f'(2) = 2 \cdot 2 - 6 = -4$ \therefore $f(x)$ decreasing
 $f'(4) = 2 \cdot 4 - 6 = 2$ \therefore $f(x)$ increasing

 \therefore local minimum at x = 3.

Find and classify the stationary points of $f(x)2x^3 - 6x$.

$$f' = 6x^2 - 6$$
 \therefore s.p. at $6x^2 = 6 \therefore x = 1, x = -1$
 $x < -1$: $\therefore f'(-2) = 6 \cdot -2^2 - 6 = 18$ $\therefore f(-2)$ is increasing.
 $-1 < x < 1$: $\therefore f(0) = 6 \cdot 0^2 - 6 = -6$ $\therefore f(0)$ is decreasing.
 $x > 1$: $\therefore f(2) = 6 \cdot 2^2 - 6 = 18$ $\therefore f(2)$ is increasing.

Related Rates

The chain rule can be used to connect rates of change. Given two quantities x and y which are related by y = f(x), if we know how fast x changes (i.e. with respect to time t) as given by $\frac{dx}{dt}$, we can determine how fast y changes using the chain rule.

Given $y = x^2$, if $\frac{dx}{dt} = 5$, we can use this to find $\frac{dy}{dt}$ when x = 3.

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$
$$= 2x \cdot 5$$
$$= 10x$$
$$= 30$$

Examples

The area of a square is growing at $16cm^3/hr$. At what rate is the length of eafch side changing when the length is 4cm? Let x be the side length and y be the area.

$$y = x^{2}$$

$$y' = 2x$$

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

$$16 = 2x \cdot \frac{dx}{dt}$$

$$= 2 \cdot 4 \cdot \frac{dx}{dt}$$

$$\frac{16}{8} = \frac{dx}{dt}$$

$$\frac{dx}{dt} = 2$$

Water drops into a circular puddle at a rate of $1cm^3/sec$. The puddle remains a constant 0.1cm deep. Given that the equation for the volume of a cylinder is $V=\frac{\pi r}{10}$, find the rate of increase of the radius.

$$V' = \frac{2\pi r}{10}$$

$$\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$$

$$1 = \frac{2\pi r}{10} \cdot \frac{dr}{dt}$$

$$\frac{10}{2\pi r} = \frac{dr}{dt}$$

$$\frac{dr}{dt} = \frac{10}{2 \cdot \pi \cdot 5}$$

$$= \frac{1}{2\pi r}$$