September 16, 2024 Integration

Integration

Indefinite Integrals (Antidifferentiation)

Integration is the reverse of differentiation. Given a function f(x), the antiderivative F(x) is any function which, when differentiated, returns the original f(x).

The basic operation of integration is **add one** to the power, divide by the power. However, as with differentiation, there are special cases. Some of these are listed to the right.

Since the derivative of x^2 is equal to the derivative of x^2+1 or indeed plus any constant, the indefinite integral of 2x must include a variable to represent that constant. There are infinitely many possible solutions to $\int 2x dx$, which vary only by the value of C.

f(x)	$\int f(x) dx$
$(ax+b)^n$	$\frac{(ax+b)^{n+1}}{a(n+1)} + C \text{ for } n \neq 1$
$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b) + C$
$\cos(ax+b)$	$\frac{1}{a}\sin(ax+b) + C$
e^{ax}	$\frac{1}{a}e^{ax} + C$
$\frac{1}{ax+b}$	$\frac{1}{a}\ln(ax+b) + c \text{ for } ax+b > 0$

Finding the Indefinite Integral

Given the equation $\frac{1}{x} + 2x$, find its indefinite integral with respect to x for x > 0.

- 1. Separate the equation into terms...
- 2. And integrate each individually.
- 3. Simplify the result.

$$\int \left(\frac{1}{x} + 2x\right) dx = \int \frac{1}{x} dx + 2 \int x dx \qquad (1)$$
$$= \frac{1}{1} \ln(1x) + 2\frac{x^2}{2} \qquad (2)$$
$$= \ln(x) + x^2 \qquad (3)$$

Examples

$$\int (3+8x) dx = \int 3 dx + \int 8x dx$$

$$= 3 \cdot \frac{x}{1} + 8 \cdot \frac{x^2}{2}$$

$$= 3x + 4x^2 + C$$

$$\int (\cos(7x) + 2e^{5x}) dx = \int \cos(7x) dx + \int 2e^{-5x} dx$$

$$= \frac{1}{7}\sin(7x) + 2 \cdot -\frac{1}{5}e^{-5x} + C$$

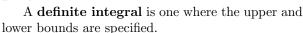
$$= \frac{\sin(7x)}{7} - \frac{2}{5}e^{-5x}$$

$$\int 5 - x^2 + \frac{18}{x^4} dx = \int 5 dx - \int x^2 dx + \int 18x^{-4} dx$$
$$= 5x - \frac{x^3}{3} + 18 \cdot \frac{x^{-3}}{-3} + C$$
$$= 5x - \frac{x^3}{3} - 6x^{-3} + C$$

$$\int \left(\frac{6}{3t-5} - 4\sin(2t)\right) dx = \int \frac{6}{3t-5} dx - \int 4\sin(2t) dx$$
$$= \frac{6}{3}\ln(3t-5) - 4 \cdot -\frac{1}{2}\cos(2t) + C$$
$$= 2\ln(3t-5) + 2\cos(2t) + C$$

Area Under Curves

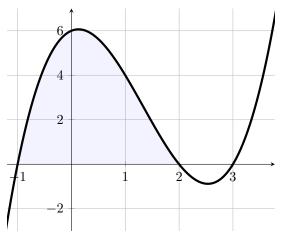
Integration is used to find the area under curves. If f(x) is a continuous function on the interval [a, b], then $\int_a^b f(x)dx = F(b) - F(a)$. In this context, the notation $\int_a^b f(x)dx$ is used to mean "the area under the curve of the function f(x) between x = a and



The graph of the equation

$$y = x^3 - 4x^2 + x + 6$$

 $y=x^3-4x^2+x+6 \eqno(4)$ is shown to the right. The area given by $\int_{-1}^2 x^3-4x^2+x+6dx$ is shaded.



Calculating The Area

Given the definite integral $\int_3^6 x^2 dx$, we can evaluate it as follows:

$$\int_{3}^{6} f^{x} dx = \frac{x^{3}}{3}$$

$$= \frac{x^{3}}{3} - \frac{x^{3}}{3}$$

$$= \frac{6^{3}}{3} - \frac{3^{3}}{3}$$
(2)
$$= \frac{6^{3}}{3} - \frac{3^{3}}{3}$$
(3)

$$=\frac{x^3}{3} - \frac{x^3}{3} \tag{2}$$

$$=\frac{6^3}{3} - \frac{3^3}{3} \tag{3}$$

$$=72 - 9$$
 (4)

$$63 (5)$$

2

Integral Identities

There are a few ways that we can simplify definite integrals.

- for any real numbers a < b < c, $\int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$
- $\int_a^b f(x)dx = \int_b^a f(x)dx$

Examples

Find $\int_{-2}^{2} f(x) dx$ for the function $[f(x) = e^x \text{ for } -2 \le x \le 0 \text{ and } f(x) = x^3 + 1 \text{ for } 0 \le x \le 2]$.

$$\begin{split} \int_{-2}^{2} f(x)dx &= \int_{-2}^{0} f(x)dx + \int_{0}^{2} f(x)dx \\ &= \int_{-2}^{0} e^{x}dx + \int_{0}^{2} x^{3} + 1dx \\ &= [e^{x}]_{-2}^{0} + [\frac{x^{4}}{4} + x]_{0}^{2} \\ &= e^{0} - e^{-2} + (\frac{2^{4}}{4} + 2) - (\frac{2^{4}}{4} + 2) \\ &= 1 - e^{-2} + 6 \\ &= 7 - e^{-2} \end{split}$$

September 16, 2024 Integration

Improper Integrals

Improper integrals are definite integrals where

one or both of of the bounds are infinite. The improper integral $\int_a^\infty f(x)dx$ can be written as $\lim_{b\to\infty}\int_a^b f(x)dx$. These integrals can be calculated by:

- 1. Find $\int_a^b f(x)dx$ as normal.
- 2. Evaluate the equation as the infinite term approaches infinity.

$$\int_{1}^{\infty} \frac{1}{x^2} dx = \left[\frac{1}{x}\right]_{1}^{\infty} \tag{1}$$

$$\lim_{b \to \infty} \frac{1}{1} - \frac{1}{b} = 1 \tag{2}$$

Examples

Evaluate $\int_0^\infty 2x dx$, if possible.

$$\int_0^\infty 2x dx = \frac{2x^2}{2}$$
$$= [x^2]_0^\infty$$
$$\lim_{b \to \infty} b^2 = \infty$$

 \therefore no integral exists.