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Algebraic And Partial Fractions

Algebraic Fractions

A polynomial is a sum of powers of a variable x, such as x3 − 3x2 − 2x + 1. An algebraic fraction
is the ratio of two polunomials. If the numerator of a fraction is greater than the denominator, it is
improper, otherwise it is proper.

Partial Fractions By Negating Variables

The expression 2
x−1 +

5
x+4 can be combined into a single fraction by introducing the common denom-

inator (x− 1)(x+4), which results in 7x+3
(x−1)(x+4) . The method of partial fractions provides a method for

reversing that operation.

1. Split the fraction based on the de-
nominator, with A and B as the nu-
merators.

2. Multiply the missing denominator
portion.

3. Simplify to a single equation.

4. Equate numerators.

5. Set one set of numerators equal to
0:

6. And solve to get a value for one of
the variables.

7. Set the other numerators equal to
0...

8. And solve for the second value.

9. Which gives a solution.

7x+ 3

(x− 1)(x+ 4)
=

A

x− 1
+

B

x+ 4
(1)

=
A(x+ 4)

(x− 1)(x+ 4)
+

B(x− 1)

(x− 1)(x+ 4)
(2)

=
A(x+ 4) +B(x− 1)

(x− 1)(x+ 4)
(3)

7x+ 3 =A(x+ 4) +B(x− 1) (4)

when x = 1 :

7 · 1 + 3 =A(1 + 4) +B(1− 1) (5)

10 =5A ∴ A = 2 (6)

when x = −4 :

7 · −4 + 3 =A(−4 + 4) +B(−4− 1) (7)

−25 =− 5B ∴ B = 5 (8)

7x+ 3

(x− 1)(x+ 4)
=

2

x− 1
+

5

x+ 4
(9)
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Examples

5 + 2

(x+ 2)(5x− 2)
=

A

x+ 2
+

B

3x− 2

=
A(3x− 2)

(x+ 2)(3x− 2)
+

B(x+ 2)

(x+ 2)(3x− 2)

5x+ 2 =A(3x− 2) +B(x+ 2)

when x = −2 :

5 · −2 + 2 =A(3 · −2− 2) +B(−2 + 2)

−8 =− 8A

A =1

when x =
2

3
:

5 · 2
3
+ 2 =A(3 · 2

3
− 2) +B(

2

3
+ 2)

16

3
=
8B

3

B =2

∴
5x+ 2

(x+ 2)(3x− 2)
=

1

x+ 2
+

2

3x− 2

3x+ 1

(x− 1)(x+ 1)
=

A

x− 1
+

B

x− 1

=
A(x+ 1)

(x− 1)(x+ 1)
+

A(x− 1

(x− 1)(x+ 1)

3x+ 1 =A(x+ 1) +B(x− 1)

when x = 1 :

3 · 1 + 1 =A(1 + 1) +B(1− 1)

4 =2A

A =2

when x = −1 :

3 · −1 + 1 =A(−1 + 1) +B(−1− 1)

−2 =− 2B

B =1

∴
3x+ 1

(x− 1)(x+ 1)
=

2

x− 1
+

1

x+ 1
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Partial Fractions By Stratifying Exponents

Another method works by equating exponents.

Steps 1-4 are the same as above.

10. Expand both sides of the equation.

11. Factor by powers of x.

12. Separate by powers of x to produce separate
equations.

13. Solve as simultaneous equations. . .

14. . . . to find one of the two variables.

15. Take one of the equations from Step 7, and
solve for the other variable.

16. Which brings us to the same answer.

7x+ 3 =A(x+ 4) +B(x− 1)

=Ax+ 4A+Bx−B (10)

=(A+B)x+ (4A−B)
(11)

[x1] : 7 =A+B (12)

[x0] : 3 =4A−B

7 + 3 =A+B + 4A−B (13)

10 =5A

A =2 (14)

7 =A+B (15)

=2 +B

B = 5

∴
7x+ 3

(x− 1)(x+ 4)
=

2

x− 1
+

5

x+ 4
(16)

Examples

10x− 7

(x− 4)(2x2 − 6x+ 3)
=

A

x+ 4
+

Bx+ C

2x2−6x

=
A(2x2 − 6x+ 3)

(x− 4)(2x2 − 6x+ 3)
+

(Bx+ C)(x+ 4)

(x− 4)(2x2 − 6x+ 4)

10x− 7 =A(2x2 − 6x+ 3) + (Bx+ C)(x+ 4)

when x = 4 : 10 · 4− 7 =A(2 · 42 − 6 · 4 + 3) + (B · 4 + C)(4− 4)

33 =A(32− 24 + 3)

A =3

10x− 7 =2Ax2 − 6Ax+ 3A+Bx2 − 4Bx+ Cx− 4C

[x2] : 0 =2A+B

[x1] : 10 =− 6A− 4B + C

[x0] : − 7 =3A− 4C

0 =2A+B

=2 · 3 +B

B =− 6

10 =− 6A− 4B + C

=− 6 · 3− 4 · −6 + C

=− 18 + 10− 24

C =18 + 10− 24

=4

10x− 7

(x− 4)(2x2 − 6x+ 3)
=

3

x− 4
+

4− 6x

2x2 − 6x+ 3
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Combining Methods

It may be necessary to use both techniques to solve more complex fractions. This can be seen when
solving the equation 9x+3

(x−1)(x2+x+10) =
A

x−1 + Bx+C
x2+x+10 .

17. Use Steps 1-4 above.

18. Use Steps 5-6 to find A.

19. Use Steps 12-14 to find B.

20. Use Steps 5-6 again to
find C.

9x+ 3 =A(x2 + x+ 10) + (Bx+ C)(x− 1) (17)

when x = 1 :

9 · 1 + 3 =A(12 + 1 + 10) +B(·1 + C)(1− 1)

12 =12A

A =1 (18)

9x+ 3 =Ax2 +Ax+ 10A+Bx2 −Bx+ Cx− C

[x2] : 0 =A+B

[x1] : 9 =A−B + c

[x0] : 3 =10A− C

B =−A

=− 1 (19)

when x = 0 : 9 · 0 + 3 =A(02 + 0 + 10) + (B · 0 + C)(0− 1)

3 =10 ·A+ C · −1

3 =10− C

C =7 (20)

∴
9x+ 3

(x− 1)(x2 + x+ 10
=

1

z − 1
+

−x+ 7

x2 + x+ 10
(21)

Yasha Duncan-Wilson yasha@duncan-wilson.co.uk 4


